Detection of circulating genetically abnormal cells using 4-color fluorescence in situ hybridization for the early detection of lung cancer

Author:

Feng Mingxiang,Ye Xin,Chen Baishen,Zhang Juncheng,Lin Miao,Zhou Haining,Huang Meng,Chen Yanci,Zhu Yunhe,Xiao Botao,Huang Chuoji,Katz Ruth L.,Bai ChunxueORCID

Abstract

Abstract Purpose Available biomarkers lack sensitivity for an early lung cancer. Circulating genetically abnormal cells (CACs) occur early in tumorigenesis. To determine the diagnostic value of CACs in blood detected by 4-color fluorescence in situ hybridization (FISH) for lung cancer. Methods This was a prospective study of patients with pulmonary nodules ≤ 30 mm detected between 10/2019 and 01/2020 at four tertiary hospitals in China. All patients underwent a pathological examination of lung nodules found by imaging and were grouped as malignant and benign. CACs were detected by 4-color FISH. Patients were divided into the training and validation cohorts. Receiver operating characteristics analysis was used to analyze the diagnosis value of CACs. Results A total of 205 participants were enrolled. Using a cut-off value of ≥ 3, blood CACs achieved areas under the curve (AUCs) of 0.887, 0.823, and 0.823 for lung cancer in the training and validation cohorts, and all patients, respectively. CACs had high diagnostic values across all tumor sizes and imaging lesion types. CACs were decreased after surgery (median, 4 vs. 1, P < 0.001) in the validation set. The CAC status between blood and tissues was highly consistent (kappa = 0.909, P < 0.001). The AUC of CAC (0.823) was higher than that of CEA (0.478), SCC (0.516), NSE (0.506), ProGRP (0.519), and CYFRA21-1 (0.535) (all P < 0.001). Conclusion CACs might have a high value for the early diagnosis of lung cancer. These findings might need to be validated in future studies. Evidence suggested homology in genetic aberrations between the CACs and the tumor cells.

Funder

The program for Guangdong Introducing Innovative and Entrepreneurial Teams

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3