High core 1β1,3-galactosyltransferase 1 expression is associated with poor prognosis and promotes cellular radioresistance in lung adenocarcinoma
-
Published:2024-04-25
Issue:4
Volume:150
Page:
-
ISSN:1432-1335
-
Container-title:Journal of Cancer Research and Clinical Oncology
-
language:en
-
Short-container-title:J Cancer Res Clin Oncol
Author:
Chen Yong,Ji Yanyan,Shen Lin,Li Ying,Ren Yue,Shi Hongcan,Li Yue,Wu Yunjiang
Abstract
Abstract
Purpose
Core 1β1,3-galactosyltransferase 1 (C1GALT1) exhibits elevated expression in multiple cancers. The present study aimed to elucidate the clinical significance of C1GALT1 aberrant expression and its impact on radiosensitivity in lung adenocarcinoma (LUAD).
Methods
The C1GALT1 expression and its clinical relevance were investigated through public databases and LUAD tissue microarray analyses. A549 and H1299 cells with either C1GALT1 knockdown or overexpression were further assessed through colony formation, gamma-H2A histone family member X immunofluorescence, 5-ethynyl-2′-deoxyuridine incorporation, and flow cytometry assays. Bioinformatics analysis was used to explore single cell sequencing data, revealing the influence of C1GALT1 on cancer-associated cellular states. Vimentin, N-cadherin, and E-cadherin protein levels were measured through western blotting.
Results
The expression of C1GALT1 was significantly higher in LUAD tissues than in adjacent non-tumor tissues both at mRNA and protein level. High expression of C1GALT1 was correlated with lymph node metastasis, advanced T stage, and poor survival, and was an independent risk factor for overall survival. Radiation notably upregulated C1GALT1 expression in A549 and H1299 cells, while radiosensitivity was increased following C1GALT1 knockdown and decreased following overexpression. Experiment results showed that overexpression of C1GALT1 conferred radioresistance, promoting DNA repair, cell proliferation, and G2/M phase arrest, while inhibiting apoptosis and decreasing E-cadherin expression, alongside upregulating vimentin and N-cadherin in A549 and H1299 cells. Conversely, C1GALT1 knockdown had opposing effects.
Conclusion
Elevated C1GALT1 expression in LUAD is associated with an unfavorable prognosis and contributes to increased radioresistance potentially by affecting DNA repair, cell proliferation, cell cycle regulation, and epithelial–mesenchymal transition (EMT).
Funder
The Jiangsu Natural Science Foundation Project Yangzhou Social Development project project from Yangzhou key discipline in oncology therapeutics
Publisher
Springer Science and Business Media LLC
Reference76 articles.
1. Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic M, Bonaventure A, Valkov M, Johnson CJ, Esteve J, Ogunbiyi OJ, Azevedo ESG, Chen WQ, Eser S, Engholm G, Stiller CA, Monnereau A, Woods RR, Visser O, Lim GH, Aitken J, Weir HK, Coleman MP (2018) Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 391(10125):1023–1075. https://doi.org/10.1016/S0140-6736(17)33326-3 2. Arike L, Hansson GC (2016) The densely O-glycosylated MUC2 mucin protects the intestine and provides food for the commensal bacteria. J Mol Biol 428(16):3221–3229. https://doi.org/10.1016/j.jmb.2016.02.010 3. Auperin A, Le Pechoux C, Rolland E, Curran WJ, Furuse K, Fournel P, Belderbos J, Clamon G, Ulutin HC, Paulus R, Yamanaka T, Bozonnat MC, Uitterhoeve A, Wang X, Stewart L, Arriagada R, Burdett S, Pignon JP (2010) Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol 28(13):2181–2190. https://doi.org/10.1200/JCO.2009.26.2543 4. Bergstrom K, Liu X, Zhao Y, Gao N, Wu Q, Song K, Cui Y, Li Y, McDaniel JM, McGee S, Chen W, Huycke MM, Houchen CW, Zenewicz LA, West CM, Chen H, Braun J, Fu J, Xia L (2016) Defective intestinal mucin-type O-glycosylation causes spontaneous colitis-associated cancer in mice. Gastroenterology 151(1):152–164. https://doi.org/10.1053/j.gastro.2016.03.039 5. Bezjak A, Temin S, Franklin G, Giaccone G, Govindan R, Johnson ML, Rimner A, Schneider BJ, Strawn J, Azzoli CG (2015) Definitive and adjuvant radiotherapy in locally advanced non-small-cell lung cancer: American Society of Clinical Oncology Clinical Practice Guideline Endorsement of the American Society for Radiation Oncology evidence-based clinical practice guideline. J Clin Oncol 33(18):2100–2105. https://doi.org/10.1200/JCO.2014.59.2360
|
|