Preoperative ultrasound-guided dual localization with titanium clips and carbon nanoparticles for predicting the surgical approach and guiding the resection of Siewert type II esophagogastric junction adenocarcinoma

Author:

Wu Weihang,Luo Ziqiang,Fang Yongchao,Yu Li,Lin Nan,Yang Jin,Zhao Hu,Xiao Chunhong,Wang Yu

Abstract

Abstract Objective To investigate the superiority of preoperative ultrasound-guided titanium clip and nanocarbon dual localization over traditional methods for determining the surgical approach and guiding resection of Siewert type II adenocarcinoma of the esophagogastric junction (AEG). Method This study included 66 patients with Siewert type II AEG who were treated at the PLA Joint Logistics Support Force 900th Hospital between September 1, 2021, and September 1, 2023. They were randomly divided into an experimental group (n = 33), in which resection was guided by the dual localization technique, and the routine group (n = 33), in which the localization technique was not used. Surgical approach predictions, proximal esophageal resection lengths, pathological features, and the occurrence of complications were compared between the groups. Result The use of the dual localization technique resulted in higher accuracy in predicting the surgical approach (96.8% vs. 75.9%, P = 0.02) and shorter proximal esophageal resection lengths (2.39 ± 0.28 cm vs. 2.86 ± 0.39 cm, P < 0.001) in the experimental group as compared to the routine group, while there was no significant difference in the incidence of postoperative complications (22.59% vs. 24.14%, P = 0.88). Conclusion Preoperative dual localization with titanium clips and carbon nanoparticles is significantly superior to traditional methods and can reliably delineate the actual infiltration boundaries of Siewert type II AEG, guide the surgical approach, and avoid excessive esophageal resection.

Funder

the Key Discipline Project of Joint Logistics

Pilot Project of Fujian Province

the Fund project of 900TH Hospital of the Joint Logistics Support Force, PLA

Startup Fund for scientificresearch, Fujian Medical Universit

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3