Author:
Chen Shengyue,Luo Xukai,Yang Baicai,Zhuang Jingming,Guo Jinshuai,Zhu Yingjie,Mo Jiahang
Abstract
AbstractG protein-coupled receptors (GPRs) are one of the largest surface receptor superfamilies, and many of them play essential roles in biological processes, including immune responses. In this study, we aim to construct a GPR- and tumor immune environment (TME-i)-associated risk signature to predict the prognosis of patients with endometrial carcinoma (EC). The GPR score was generated by applying univariate Cox regression and the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression in succession. This involved identifying the differentially expressed genes (DEGs) in the Cancer Genome Atlas-Uterine Corpus Endometrioid Carcinoma (TCGA-UCEC) cohort. Simultaneously, the CIBERSORT algorithm was applied to identify the protective immune cells for TME score construction. Subsequently, we combined the GPR and TME scores to establish a GPR-TME classifier for conducting clinical prognosis assessments. Various functional annotation algorithms were used to conduct biological process analysis distinguished by GPR-TME subgroups. Furthermore, weighted correlation network analysis (WGCNA) was applied to depict the tumor somatic mutations landscapes. Finally, we compared the immune-related molecules between GPR-TME subgroups and resorted to the Tumor Immune Dysfunction and Exclusion (TIDE) for immunotherapy response prediction. The mRNA and protein expression of GPR-related gene P2RY14 were, respectively, validated by RT-PCR in clinical samples and HPA database. To conclude, our GPR-TME classifier may aid in predicting the EC patients’ prognosis and immunotherapy responses.
Funder
the Science and Technology of the People's Livelihood Project of Jiaxing City
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献