Immune- and metabolism-related gene signature analysis uncovers the prognostic and immune microenvironments of hepatocellular carcinoma

Author:

Gu Yange,Ma Ensi,Jiang Shengran,Shan Zhenyu,Xia Guixi,Ma Rui,Fu Jiaqi,Wang Zhengxin

Abstract

Abstract Background Metabolic reprogramming is an emerging hallmark that influences the tumour microenvironment (TME) by regulating the behavior of cancer cells and immune cells. The relationship between metabolism and immunity remains elusive. The purpose of this study was to explore the predictive value of immune- and metabolism-related genes in hepatocellular carcinoma (HCC) and their intricate interplay with TME. Methods We established the immune- and metabolism-related signature (IMRPS) based on the LIHC cohort from The Cancer Genome Atlas (TCGA) dataset. Kaplan–Meier analysis, receiver operating characteristic (ROC) curve analysis and Cox regression analysis confirmed the prognostic value of IMRPS. We investigated differences in immune cell infiltration, clinical features, and therapeutic response between risk groups. The quantitative real-time PCR (qPCR) was used to confirm the expression of signature genes. Immunohistochemical staining was performed to evaluate immune infiltration features in HCC tissue samples. We conducted cell experiments including gene knockout, cell counting kit-8 (CCK-8), and flow cytometry to explore the role of the IMRPS key gene UCK2 in HCC. RNA-seq was used to further investigate the potential underlying mechanism involved. Results The IMRPS, composed of four genes, SMS, UCK2, PFKFB4 and MAPT, exhibited significant correlations with survival, immune cell infiltration, clinical features, immune checkpoints and therapeutic response. The IMRPS was shown to be an excellent predictor of HCC prognosis. It could stratify patients appropriately and characterize the TME accurately. The high-risk HCC group exhibited an immunosuppressive microenvironment with abundant M2-like macrophage infiltration, which was confirmed by the immunohistochemistry results. The results of qPCR revealed that the expression of signature genes in 20 HCC tissues was significantly greater than that in adjacent normal tissues. After the key gene UCK2 was knocked out, the proliferation of the Huh7 cell line was significantly inhibited, and monocyte-derived macrophages polarized towards an M1-like phenotype in the coculture system. RNA-seq and GSEA suggested that the phenotypes were closely related to the negative regulation of growth and regulation of macrophage chemotaxis. Conclusions This study established a new IMRS for the accurate prediction of patient prognosis and the TME, which is also helpful for identifying new targets for the treatment of HCC.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3