Identification of prognostic biomarkers associated with tumor microenvironment in ceRNA network for esophageal squamous cell carcinoma: a bioinformatics study based on TCGA database

Author:

Song Danlei,Wei Yongjian,Hu Yuping,Chen Xia,Zheng Ya,Liu Min,Wang Yuping,Zhou Yongning

Abstract

Abstract Background Esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer in the world with high incidence rate and poor prognosis. Infiltrated immune and stromal cells are vital components of tumor microenvironment (TME) and have a significant impact on the progression of ESCC. The competitive endogenous RNA (ceRNA) hypothesis has been proved important in the molecular biological mechanisms of tumor development. However, there are few studies on the relationship between ceRNA and ESCC TME. Methods The proportion of tumor-infiltrating immune cells and the amount of stromal and immune cells in ESCC cases were calculated from The Cancer Genome Atlas database using the CIBERSORT and ESTIMATE calculation methods. After stratified identification of differentially expressed genes, WGCNA and miRNA prediction system were applied to construct ceRNA network. Finally, PPI network and survival analysis were selected to discriminate prognostic signature. And the results were verified in two independent groups from Gene Expression Omnibus and Lanzhou, China. Results We found that high Stromal and ESTIMATE scores were significantly associated with poor overall survival. Three TME-related key prognostic genes were screened, namely, LCP2, CD86, SLA. And the expression of them was significantly correlated with infiltrated immunocytes. It is also found that ESTIMATE Score and the expression of CD86 were both related to TNM system of ESCC. Conclusions We identified three novel TME-related prognostic markers and their lncRNA-miRNA-mRNA pathway in ESCC patients, which may provide new strategies for the targeted therapy.

Funder

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3