Abstract
Abstract
Background
The presence or future development of metastatic pheochromocytomas or paragangliomas (mPPGLs) can be difficult to diagnose or predict at initial presentation. Since production of catecholamines from mPPGLs is different from non-metastatic tumors (non-mPPGLs), this study aimed to clarify whether presenting catecholamine-related signs and symptoms (cSS) might also differ.
Methods
The study included 249 patients, 43 with mPPGL and 206 with non-mPPGL. Clinical data at the time of biochemical diagnosis (i.e. at entry into the study) were used to generate a cumulative score of cSS for each patient.
Results
Patients with mPPGL were significantly younger (43.3 ± 14 vs. 48.9 ± 16.1 years) and included a lower proportion of females (39.5% vs. 60.7%) than patients with non-mPPGLs. Frequencies of signs and symptoms did not differ between the two groups. Patients with mPPGLs had lower (P < 0.001) urinary excretion of epinephrine (3.5 (IQR, 1.9—6.5) µg/day) than those with non-mPPGLs (19.1 (IQR, 4.3—70.2) µg/day). There was no difference in urinary excretion of norepinephrine. In patients with mPPGLs a high cSS score was associated with high urinary excretion of norepinephrine and normetanephrine. In contrast, in patients with non-mPPGLs, a high cSS was associated with high urinary excretion of epinephrine and metanephrine.
Conclusion
Although presenting signs and symptoms were associated with production of norepinephrine in patients with mPPGLs and of epinephrine in patients with non-mPPGLs, there were no differences in signs and symptoms between the two groups. Therefore, consideration of signs and symptoms does not appear helpful for distinguishing patients with and without mPPGLs.
Funder
Technische Universität Dresden
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism
Reference29 articles.
1. Turkova H, Prodanov T, Maly M, Martucci V, Adams K, Widimsky J Jr, et al. Characteristics and outcomes of metastatic Sdhb and sporadic pheochromocytoma/paraganglioma: an national institutes of health study. Endocr Pract. 2016;22(3):302–14. https://doi.org/10.4158/EP15725.OR.
2. Wang Y, Li M, Deng H, Pang Y, Liu L, Guan X. The systems of metastatic potential prediction in pheochromocytoma and paraganglioma. Am J Cancer Res. 2020;10(3):769–80.
3. Qin N, de Cubas AA, Garcia-Martin R, Richter S, Peitzsch M, Menschikowski M, et al. Opposing effects of HIF1alpha and HIF2alpha on chromaffin cell phenotypic features and tumor cell proliferation: insights from MYC-associated factor X. Int J Cancer. 2014;135(9):2054–64. https://doi.org/10.1002/ijc.28868.
4. Eisenhofer G, Lenders JW, Siegert G, Bornstein SR, Friberg P, Milosevic D, et al. Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur J Cancer. 2012;48(11):1739–49. https://doi.org/10.1016/j.ejca.2011.07.016.
5. Gimenez-Roqueplo AP, Favier J, Rustin P, Rieubland C, Crespin M, Nau V, et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 2003;63(17):5615–21.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献