TRAIL predisposes non-small cell lung cancer to ferroptosis by regulating ASK-1/JNK1 pathway

Author:

Liu Xiaofang,Deng Huiqian,Huang Mi,Zhou Wei,Yang Yilin

Abstract

Abstract Objective Our current study aimed to assess the relationship between TNF-related apoptosis-inducing ligand (TRAIL) and ferroptosis in non-small cell lung cancer (NSCLC) development. Methods The expression of TRAIL was detected by western blot, RT-qRCR and immunohistochemistry. The viability of NSCLC cells was analyzed by CCK-8 kit. The migration and invasion of NSCLC cells were detected by wound healing assay and transwell assay, respectively. Labile iron pool (LIP) was detected based on the calcein-acetoxymethyl ester method. Ferrous iron (Fe2+) and iron levels were assessed by detection kits. The levels of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were measured using corresponding detection kits. Mice tumor xenograft models were used for the in vivo research. Results The expression of TRAIL was reduced in H1299, NCL-H1395, and A549 cells compared with BEAS-2B cells. The up-regulation of TRAIL expression significantly reduced cell viability, invasion, and migration of H1299 and A549 cells. TRAIL reduced the expression of ferroptosis-related genes (FTH1, GPX4, and SLC7A11), increased the levels of LIP, iron, and Fe2+, and promoted lipid peroxidation, thereby predisposing NSCLC cells to ferroptosis. TRAIL up-regulated the expression of phosphate modification of ASK-1 and JNK. ASKI-1 inhibitor GS-4977 attenuated the effects of TRAIL on the viability, migration, invasion, and ferroptosis of H1299 cells. Furthermore, TRAIL further suppressed tumor growth and ferroptosis in mice tumor xenograft models. Conclusion We indicated that overexpression of TRAIL induced ferroptosis in NSCLC cells and exerted anti-tumor effects. Mechanistically, TRAIL promoted ferroptosis by the activation of the ASK-1/JNK1 pathway. Our results may provide new therapeutic strategies for NSCLC.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TRIAL-based combination therapies in cancers;International Immunopharmacology;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3