Asperuloside inhibits the activation of pancreatic cancer-associated fibroblasts via activating transcription factor 6

Author:

Cao Ling-zhi,Yang Fan-hui,Zhang Hao,Jia Ai-min,Li Su-ping,Wen Hu-ling

Abstract

Abstract Background Pancreatic cancer-associated fibroblasts (CAFs) play a crucial role in tumor progression and immune evasion. Asperuloside (ASP) is an iridoid glycoside with potential anti-tumor properties. This study aimed to explore the molecular mechanisms of ASP on CAFs, particularly focusing on its effects on activating transcription factor 6 (ATF6), a key regulator of endoplasmic reticulum stress. Method CAFs were treated with different concentrations of ASP (0, 1, 3, and 5 mM), and the role of ATF6 was investigated by over-expressing it in CAFs. Subsequently, western blot was used to detect ATF6, α-smooth muscle actin (α-SMA), fibroblast activating protein (FAP), and vimentin protein levels in CAFs. The collagen gel contraction assay and Transwell assay were applied to evaluate the contraction and migration ability of CAFs. In addition, the interleukin (IL)-6, C–C motif chemokine ligand (CCL)-2, and C-X-C motif chemokine ligand (CXCL)-10 levels were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results CAFs had significantly higher expression levels of α-SMA, FAP, and vimentin compared to normal fibroblasts (NFs). ASP significantly inhibited the activation, contraction, and migration of CAFs in a concentration-dependent manner. ASP treatment also reduced the expression of cytokines (IL-6, CCL2, and CXCL10) and down-regulated ATF6 levels. Over-expression of ATF6 mitigated the inhibitory effects of ASP. Conclusion ASP exerts its anti-tumor effects by down-regulating ATF6, thereby inhibiting the activation and function of pancreatic CAFs. These findings suggest that ASP could be a promising therapeutic agent for pancreatic cancer by modulating the tumor microenvironment.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3