Author:
Pang Wenguang,Gong Longlong,Shi Wangpan,Zheng Hongbo,Ye Min,Chen Jiarong,Li Ronggang,Zhang Xin,Ren Dong,Wang Zheng
Abstract
AbstractNext generation sequencing (NGS) is typically used to reveal tumor gene variation feature for targeted therapy of various types of human cancers, including non-small cell lung cancer (NSCLC). Here, we report the role and potential applicable value of combining DNA and RNA sequencing in gene variation detection in NSCLC. 386 NSCLC patients with stage II-IV were enrolled and detected using NGS sequencing of DNA and RNA panels that covered all well-documented target driver genes from the Chinese Society of Clinical Oncology (CSCO). The rate of epidermal growth factor receptor (EGFR) single nucleotide variation (SNV)/indel, mesenchymal-epithelial transition factor (MET) copy number variation (CNV) and anaplastic lymphoma kinase (ALK) fusion were 52.1%, 4.1% and 6.0% in the NSCLC cohort. The landscapes of SNV/indel, CNV and gene fusion in the cohort were depicted as well. Meanwhile, we assessed detection efficacy of DNA and RNA sequencing in gene fusion. Detected number and types of gene fusion using the RNA sequencing were better than those using the DNA sequencing. Gene fusion with intergenic region was only detected by DNA sequencing and MET exon 14 skipping (METΔex14) was more easily identified by RNA sequencing. Finally, we investigated clinical correlations of SNV/indel/CNV/fusion with clinicopathologic features in the NSCLC cohort. Taken together, RNA sequencing significantly complements deficiency of DNA sequencing for gene fusion, which cooperatively presents comprehensive and reliable gene variation features and facilitate the identification of potential drug targets for NSCLC patients.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献