Author:
Wei Yitian,Ma Lujuan,Peng Qian,Lu Lin
Abstract
AbstractHepatocellular carcinoma (HCC) has high incidence and mortality rates worldwide. Damaged mitochondria are characterized by the overproduction of reactive oxygen species (ROS), which can promote cancer development. The prognostic value of the interplay between mitochondrial function and oxidative stress in HCC requires further investigation. Gene expression data of HCC samples were collected from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC). We screened prognostic oxidative stress mitochondria-related (OSMT) genes at the bulk transcriptome level. Based on multiple machine learning algorithms, we constructed a consensus oxidative stress mitochondria-related signature (OSMTS), which contained 26 genes. In addition, we identified six of these genes as having a suitable prognostic value for OSMTS to reduce the difficulty of clinical application. Univariate and multivariate analyses verified the OSMTS as an independent prognostic factor for overall survival (OS) in HCC patients. The OSMTS-related nomogram demonstrated to be a powerful tool for the clinical diagnosis of HCC. We observed differences in biological function and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. The highest expression of the OSMTS was detected in hepatocytes at the single-cell transcriptome level. Hepatocytes in the high- and low-risk groups differed significantly in terms of biological function and intercellular communication. Moreover, at the spatial transcriptome level, high expression of OSMTS was mainly in regions enriched in hepatocytes and B cells. Potential drugs targeting specific risk subgroups were identified. Our study revealed that the OSMTS can serve as a promising tool for prognosis prediction and precise intervention in HCC patients.
Funder
the Natural Science Foundation of Guangdong Province
Guangzhou Planned Project of Science and Technology
the Key Project of Scientific and Technological Bureau of Guangzhou City
Publisher
Springer Science and Business Media LLC