DCE-MRI radiomics nomogram can predict response to neoadjuvant chemotherapy in esophageal cancer

Author:

Qu Jinrong,Ma Ling,Lu Yanan,Wang Zhaoqi,Guo Jia,Zhang Hongkai,Yan Xu,Liu Hui,Kamel Ihab R.,Qin Jianjun,Li Hailiang

Abstract

Abstract Objectives To assess volumetric DCE-MRI radiomics nomogram in predicting response to neoadjuvant chemotherapy (nCT) in EC patients. Methods This retrospective analysis of a prospective study enrolled EC patients with stage cT1N + M0 or cT2-4aN0-3M0 who received DCE-MRI within 7 days before chemotherapy, followed by surgery. Response assessment was graded from 1 to 5 according to the tumor regression grade (TRG). Patients were stratified into responders (TRG1 + 2) and non-responders (TRG3 + 4 + 5). 72 radiomics features and vascular permeability parameters were extracted from DCE-MRI. The discriminating performance was assessed with ROC. Decision curve analysis (DCA) was used for comparing three different models. Results This cohort included 82 patients, and 72 tumor radiomics features and vascular permeability parameters acquired from DCE-MRI. mRMR and LASSO were performed to choose the optimized subset of radiomics features, and 3 features were selected to create the radiomics signature that were significantly associated with response (P < 0.001). AUC of combining radiomics signature and DCE-MRI performance in the training (n = 41) and validation (n = 41) cohort was 0.84 (95% CI 0.57–1) and 0.86 (95% CI 0.74–0.97), respectively. This combined model showed the best discrimination between responders and non-responders, and showed the highest positive and positive predictive value in both training set and test set. Conclusions The radiomics features are useful for nCT response prediction in EC patients.

Funder

the General Programs of the National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Henan Province Medical Science and Technology Research Program Provincial Department to jointly build key projects

Special funding of the Henan Health Science and Technology Innovation Talent Project

Henan Province focuses on research and development and promotion

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3