Machine learning-based predictive model for the differential diagnosis of ≤ 5 cm gastric stromal tumor and gastric schwannoma based on CT images

Author:

Chen Guoxian,Fan Lifang,Liu Jie,Wu Shujian

Abstract

AbstractThe clinical symptoms of ≤ 5 cm gastric stromal tumor (GST) and gastric schwannoma (GS) are similar, but the treatment regimens are different. This study explored the value of computed tomography (CT) combined with machine learning (ML) algorithms to find the best model to discriminate them. A total of 126 patients with GST ≤ 5 cm and 35 patients with GS ≤ 5 during 2013–2022 were included. CT imaging features included qualitative data (tumor location, growth pattern, lobulation, surface ulcer status, necrosis, calcification, and surrounding lymph nodes) and quantitative data [long diameter (LD); short diameter (SD); LD/SD ratio; degree of enhancement (DE); heterogeneous degree (HD)]. Patients were randomly divided into a training set (n = 112) and test set (n = 49) using 7:3 stratified sampling. The univariate and multivariate logistic regression analysis were used to identify independent risk factors. Five ML algorithms were used to build prediction models: Support Vector Machine, k-Nearest Neighbor, Random Forest, Extra Trees, and Extreme Gradient Boosting Machine. The analysis identified that HDv, lobulation, and tumor growth site were independent risk factors (P < 0.05). We should focus on these three imaging features of tumors, which are relatively easy to obtain. The area under the curve for the SVM, KNN, RF, ET, and XGBoost prediction models were, respectively, 0.790, 0.895, 0.978, 0.988, and 0.946 for the training set, and were, respectively, 0.848, 0.892, 0.887, 0.912, and 0.867 for the test set. The CT combined with ML algorithms generated predictive models to improve the differential diagnosis of ≤ 5 cm GST and GS which has important clinical practical value. The Extra Trees algorithm resulted in the optimal model.

Funder

The Provincial Quality Engineering Project of Anhui

Anhui university natural science research project

The Open Fund of Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3