Integrating TCGA and single-cell sequencing data for colorectal cancer: a 10-gene prognostic risk assessment model
-
Published:2023-09-13
Issue:1
Volume:14
Page:
-
ISSN:2730-6011
-
Container-title:Discover Oncology
-
language:en
-
Short-container-title:Discov Onc
Author:
Lu Di,Li Xiaofang,Yuan Yuan,Li Yaqi,Wang Jiannan,Zhang Qian,Yang Zhiyu,Gao Shanjun,Zhang Xiulei,Zhou Bingxi
Abstract
AbstractColorectal cancer represents a significant health threat, yet a standardized method for early clinical assessment and prognosis remains elusive. This study sought to address this gap by using the Seurat package to analyze a single-cell sequencing dataset (GSE178318) of colorectal cancer, thereby identifying distinctive marker genes characterizing various cell subpopulations. Through CIBERSORT analysis of colorectal cancer data within The Cancer Genome Atlas (TCGA) database, significant differences existed in both cell subpopulations and prognostic values. Employing WGCNA, we pinpointed modules exhibiting strong correlations with these subpopulations, subsequently utilizing the survival package coxph to isolate genes within these modules. Further stratification of TCGA dataset based on these selected genes brought to light notable variations between subtypes. The prognostic relevance of these differentially expressed genes was rigorously assessed through survival analysis, with LASSO regression employed for modeling prognostic factors. Our resulting model, anchored by a 10-gene signature originating from these differentially expressed genes and LASSO regression, proved adept at accurately predicting clinical prognoses, even when tested against external datasets. Specifically, natural killer cells from the C7 subpopulation were found to bear significant associations with colorectal cancer survival and prognosis, as observed within the TCGA database. These findings underscore the promise of an integrated 10-gene signature prognostic risk assessment model, harmonizing single-cell sequencing insights with TCGA data, for effectively estimating the risk associated with colorectal cancer.
Funder
Natural Science Foundation of Henan Province "23456 Talent Project" of Henan Provincial People’s Hospital
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism
Reference48 articles.
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. 2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. 3. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–91. 4. Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Engstrom PF, Garrido-Laguna I, Grem JL, Grothey A, Hochster HS, Hoffe S, Hunt S, Kamel A, Kirilcuk N, Krishnamurthi S, Messersmith WA, Meyerhardt J, Miller ED, Mulcahy MF, Murphy JD, Nurkin S, Saltz L, Sharma S, Shibata D, Skibber JM, Sofocleous CT, Stoffel EM, Stotsky-Himelfarb E, Willett CG, Wuthrick E, Gregory KM, Freedman-Cass DA. NCCN guidelines insights: colon cancer, version 2.2018. J Natl Comp Cancer Netw JNCCN. 2018;16(4):359–69. 5. Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52(1):17–35.
|
|