Mitophagy genes in ovarian cancer: a comprehensive analysis for improved immunotherapy

Author:

He Wenting,Chen Jieping,Zhou Yun,Deng Ting,Feng Yanling,Luo Xiaolin,Zhang Chuyao,Huang He,Liu Jihong

Abstract

Abstract Background Mitophagy is a process of selectively degrading damaged mitochondria, which has been found to be related to immunity, tumorigenesis, tumor progression, and metastasis. However, the role of mitophagy-related genes (MRGs) in the tumor microenvironment (TME) of ovarian cancer (OV) remains largely unexplored. Methods We analyzed the expression, prognosis, and genetic alterations of 29 MRGs in 480 OV samples. Unsupervised clustering was used to classify OV into two subtypes (clusters A and B) based on MRG changes. We compared the clinical features, differential expressed genes (DEGs), pathways, and immune cell infiltration between the two clusters. We constructed a mitophagy scoring system (MRG_score) based on the DEGs and validated its ability to predict overall survival of OV patients. Results We found that patients with high MRG_scores had better survival status and increased infiltration by immune cells. Further analysis showed that these patients may be more sensitive to immune checkpoint inhibitor (ICI) treatment. Additionally, the MRG_score significantly correlated with the sensitivity of chemotherapeutic drugs and targeted inhibitors. Conclusion Our comprehensive analysis of MRGs in the TME, clinical features, and patient prognosis revealed that the MRG_score is a potentially effective prognostic biomarker and predictor of treatment. This study provides new insights into the role of MRGs in OV and identifies patients who may benefit from ICI treatment, chemotherapy, or targeted treatment.

Funder

National Natural Science Foundation of China

Key scientific research platforms and research projects of universities in Guangdong Province

he Guangdong basic and applied basic research fund project-regional joint fund

General guidance project of Health Science and technology in Guangzhou

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3