Identification and validation of a novel six-gene signature based on mucinous adenocarcinoma-related gene molecular typing in colorectal cancer

Author:

Man Yuxin,Xin Dao,Ji Yang,Liu Yang,Kou Lingna,Jiang Lingxi

Abstract

Abstract Background and objectives Colorectal mucinous adenocarcinoma (MAC) is a particular pathological type that has yet to be thoroughly studied. This study aims to investigate the characteristics of colorectal MAC-related genes in colorectal cancer (CRC), explore the role of MAC-related genes in accurately classifying CRC, and further construct a prognostic signature. Methods CRC samples were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). MAC-related differentially expressed genes (DEGs) were analyzed in TCGA samples. Based on colorectal MAC-related genes, TCGA CRC samples were molecularly typed by the non-negative matrix factorization (NMF). According to the molecular subtype characteristics, the RiskScore signature was constructed through univariate Cox, the least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. Clinical significance in CRC of the RiskScore signature was analyzed. A nomogram was further built based on the RiskScore signature. Results From the colorectal MAC-related genes, three distinct molecular subtypes were identified. A RiskScore signature composed of six CRC subtype-related genes (CALB1, MMP1, HOXC6, ZIC2, SFTA2, and HYAL1) was constructed. Patients with high-RiskScores had the worse prognoses. RiskScores led to differences in gene mutation characteristics, antitumor drug sensitivity, and tumor microenvironment of CRC. A nomogram based on the signature was developed to predict the one-, three-, and five-year survival of CRC patients. Conclusion MAC-related genes were able to classify CRC. A RiskScore signature based on the colorectal MAC-related molecular subtype was constructed, which had important clinical significance for guiding the accurate stratification of CRC patients.

Funder

Excellent Youth Fund of Sichuan Cancer Hospital

National funded postdoctoral researcher program of China

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3