Author:
Xu Chao,Xie Yongjie,Xie Peng,Li Jianming,Tong Zhongsheng,Yang Yanfang
Abstract
Abstract
Background
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with limited treatment options and poor prognosis. This study aimed to identify potential therapeutic targets based on the expression profiles of differentially expressed genes (DEGs) in TNBC.
Methods
The Limma package was used to identify DEGs in TCGA and GEO datasets. Immunohistochemical (IHC) analysis and western blotting were used to determine the expression of ZDHHC9 in TNBC tissues. Flow cytometry assay and tissue immunofluorescence analysis were used to detect infiltration of multiple immune cells in tumor tissue at different levels of ZDHHC9 expression.
Results
ZDHHC9 was identified as a key factor associated with resistance to ICB therapy through weighted gene co-expression network analysis (WGCNA) and single-cell RNA sequencing (scRNA-seq). Subsequently, immunohistochemical (IHC) analysis and western blotting verified that ZDHHC9 expression was elevated in TNBC cancer tissues and that elevated expression of ZDHHC9 was associated with the poor survival of patients with TNBC. Analysis of data from several public datasets revealed that patients with high ZDHHC9 expression had an increased proportion of Ki-67 + breast cancer cells and tended to be basal-like breast cancer. In addition, in vitro and in vivo experiments demonstrated that high expression of ZDHHC9 significantly predicted the efficacy and responsiveness of immunotherapy in TNBC.
Conclusion
These findings suggest that ZDHHC9 is a valuable marker for guiding the classification, diagnosis and prognosis of TNBC and developing specific targeted therapies.
Funder
Science & Technology Development Fund of Tianjin Education Commission for Higher Education
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. When pyro(ptosis) meets palm(itoylation);Cytokine & Growth Factor Reviews;2024-06