Author:
Du Lihuan,Zhang Nan,Wang Bohan,Cheng Wei,Wen Jiaming
Abstract
Abstract
Background
Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of renal tumors and is associated with a unfavorable prognosis. Disulfidptosis is a recently identified form of cell death mediated by disulfide bonds. Numerous studies have highlighted the significance of immune checkpoint genes (ICGs) in ccRCC. Nevertheless, the involvement of disulfidptosis-related immune checkpoint genes (DRICGs) in ccRCC remains poorly understood.
Methods
The mRNA expression profiles and clinicopathological data of ccRCC patients were obtained from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases. The associations between disulfidptosis-related genes (DRGs) and immune checkpoint genes (ICGs) were assessed to identify DRICGs. Cox regression analysis and least absolute shrinkage and selection operator (LASSO) analysis were conducted to construct a risk signature.
Results
A total of 39 differentially expressed immune-related candidate genes were identified. A prognostic signature was constructed utilizing nine DRICGs (CD276, CD80, CD86, HLA-E, LAG3, PDCD1LG2, PVR, TIGIT, and TNFRSF4) and validated using GEO data. The risk model functioned as an independent prognostic indicator for ccRCC, while the associated nomogram provided a reliable scoring system for ccRCC. Gene set enrichment analysis indicated enrichment of phospholipase D, antigen processing and presentation, and ascorbate and aldarate metabolism-related signaling pathways in the high-risk group. Furthermore, the DRICGs exhibited correlations with the infiltration of various immune cells. It is noteworthy that patients with ccRCC categorized into distinct risk groups based on this model displayed varying sensitivities to potential therapeutic agents.
Conclusions
The novel DRICG-based risk signature is a reliable indicator for the prognosis of ccRCC patients. Moreover, it also aids in drug selection and correlates with the tumour immune microenvironment in ccRCC.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.
2. Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021;17:245–61.
3. Shao N, Wan F, Abudurexiti M, Wang J, Zhu Y, Ye D. Causes of death and conditional survival of renal cell carcinoma. Front Oncol. 2019;9:591.
4. Mitchell TJ, Turajlic S, Rowan A, Nicol D, Farmery JHR, O’Brien T, et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell. 2018;173(611–23): e17.
5. Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015;21:687–92.