Abstract
AbstractCervical cancer (CC) is the 4th most leading cause of death among women worldwide, and if diagnosed in late stages the treatment options are almost negligible. 99% of CC is caused by high-risk human papilloma viruses (HR-HPV). Upon integration into human genome, the encoded viral proteins mis-regulate various onco-suppressors and checkpoint factors including cell cycle regulators. One such protein is cell cycle S phase licensing factor, CDC-10 dependent transcript-2 (Cdt2) which has been reported to be highly upregulated in various cancers including CC. Also, in CC cells, several tumor suppressor miRNAs are suppressed, including miR-17 ~ 92 cluster. In this study, we report that miR-17 ~ 92 directly recruits to 3’UTR of Cdt2 and downregulates this oncogene which suppresses the proliferation, migration and invasion capabilities of the CC cell lines without affecting non-cancerous cells. We further show that suppression of Cdt2 by miR-17 ~ 92, blocks the cancerous cells in S phase and induces apoptosis, eventually leading to their death. Hence, our work for the first time, mechanistically shows how miR-17 ~ 92 could work as tumor suppressor in cervical cancer cells, opening up the potential of miR-17 ~ 92 to be used in developing therapy for cervical cancer treatment.
Funder
Department of Biotechnology, Ministry of Science and Technology, India
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism
Reference35 articles.
1. Zhao Y-B, Wang J-H, Chen X-X, Wu Y-Z, Wu Q. Values of three different preoperative regimens in comprehensive treatment for young patients with stage Ib2 cervical cancer. Asian Pac J Cancer Prev. 2012;13:1487–9.
2. Burki TK. Cervical cancer: screening and risk with age. Lancet Oncol. 2014. https://doi.org/10.1016/s1470-2045(14)70032-4.
3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.
4. Boyer SN, Wazer DE, Band V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 1996;56:4620–4.
5. Münger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M, et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene. 2001;20:7888–98.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献