Author:
Li Hong,Gao Yizhi,Ren Chenchen
Abstract
AbstractFocal adhesion kinase (FAK) activation has been reported to be associated with cell progression and metastasis in a wide variety of cancer cells. Target treatment by inhibiting FAK has achieved remarkable effects in several cancers, but the effect in ovarian cancer has not been reported. In this study, we determined the role and the underlying molecular mechanism of BI853520, a novel small chemical FAK inhibitor against ovarian cancer. Results show that phosphorylated FAK tyrosine 397 (p-FAK Y397) is highly expressed in ovarian cancer tumor tissues and cell lines (SKOV3 and OVCAR3). BI853520 treatment greatly suppresses cell proliferation, viability, migration, invasion, decreases anchorage-independent growth and motility in vitro. Besides, treatment with BI853520 increases biologic effects following combination with chemotherapy in ovarian cancer cell lines. In addition, BI853520 suppresses EMT in ovarian cancer cell lines. Mechanically, BI853520 treatment downregulates the activation of PI3K/AKT/mTOR signal pathway. Finally, mice model experiments confirm BI853520 treatment dramatically reduces tumor growth in vivo and suppresses the activation of PI3K/AKT/mTOR signal pathway. Taken together, our findings demonstrate that focal adhesion kinase inhibitor BI853520 inhibits cell proliferation, migration, invasion and EMT process through PI3K/AKT/mTOR signaling pathway in ovarian cancer, and BI853520 can offer a preclinical rationale for targeting repression of FAK in ovarian cancer.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism
Reference34 articles.
1. Hao H, Naomoto Y, Bao X, Watanabe N, Sakurama K, Noma K, Motoki T, Tomono Y, Fukazawa T, Shirakawa Y, Yamatsuji T, Matsuoka J, Wang ZG, Takaoka, . Focal adhesion kinase as potential target for cancer therapy (review). Oncol Rep. 2009;22(05):973–9.
2. Schaller MD. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci. 2010;123(7):1007–13.
3. Troyanovsky SM. Mechanism of cell-cell adhesion complex assembly. Curr Opin Cell Biol. 1999;11(5):561–6.
4. Angevin E, Lopez-Martin JA, Lin CC, Gschwend JE, Harzstark A, Castellano D, et al. Phase I study of Dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma. Clin Cancer Res. 2013;19(5):1257–68.
5. Ding L, Congwei L, Bei Q, Tao Y, Ruiguo W, Heze Y, et al. mTOR: an attractive therapeutic target for osteosarcoma? Oncotarget. 2016;7(31):50805–13.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献