Author:
Larsen Michael,Taylor Jay,Tiep Pham Huu
Abstract
AbstractFor every integerkthere exists a bound$$B=B(k)$$B=B(k)such that if the characteristic polynomial of$$g\in \textrm{SL}_n(q)$$g∈SLn(q)is the product of$$\le k$$≤kpairwise distinct monic irreducible polynomials over$$\mathbb {F}_q$$Fq, then every elementxof$$\textrm{SL}_n(q)$$SLn(q)of support at leastBis the product of two conjugates ofg. We prove this and analogous results for the other classical groups over finite fields; in the orthogonal and symplectic cases, the result is slightly weaker. With finitely many exceptions (p, q), in the special case that$$n=p$$n=pis prime, ifghas order$$\frac{q^p-1}{q-1}$$qp-1q-1, then every non-scalar element$$x \in \textrm{SL}_p(q)$$x∈SLp(q)is the product of two conjugates ofg. The proofs use the Frobenius formula together with upper bounds for values of unipotent and quadratic unipotent characters in finite classical groups.
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Andrews, S., Thiem, N.: The combinatorics of $${\rm GL}_n$$ generalized Gelfand–Graev characters. J. Lond. Math. Soc. (2) 95(2), 475–499 (2017)
2. Lecture Notes in Mathematics,1985
3. Asai, T.: Unipotent class functions of split special orthogonal groups $${\rm SO}^{+}_{2n}$$ over finite fields. Commun. Algebra 12(5–6), 517–615 (1984)
4. Asai, T.: The unipotent class functions on the symplectic groups and the odd orthogonal groups over finite fields. Commun. Algebra 12(5–6), 617–645 (1984)
5. Bonnafé, C.: Sur les caractères des groupes réductifs finis à centre non connexe: applications aux groupes spéciaux linéaires et unitaires. Astérisque 306 (2006)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献