A note on Bridgeland moduli spaces and moduli spaces of sheaves on $$X_{14}$$ and $$Y_3$$

Author:

Liu Zhiyu,Zhang Shizhuo

Abstract

AbstractWe study Bridgeland moduli spaces of semistable objects of $$(-1)$$ ( - 1 ) -classes and $$(-4)$$ ( - 4 ) -classes in the Kuznetsov components on index one prime Fano threefold $$X_{4d+2}$$ X 4 d + 2 of degree $$4d+2$$ 4 d + 2 and index two prime Fano threefold $$Y_d$$ Y d of degree d for $$d=3,4,5$$ d = 3 , 4 , 5 . For every Serre-invariant stability condition on the Kuznetsov components, we show that the moduli spaces of stable objects of $$(-1)$$ ( - 1 ) -classes on $$X_{4d+2}$$ X 4 d + 2 and $$Y_d$$ Y d are isomorphic. We show that moduli spaces of stable objects of $$(-1)$$ ( - 1 ) -classes on $$X_{14}$$ X 14 are realized by Fano surface $$\mathcal {C}(X)$$ C ( X ) of conics, moduli spaces of semistable sheaves $$M_X(2,1,6)$$ M X ( 2 , 1 , 6 ) and $$M_X(2,-1,6)$$ M X ( 2 , - 1 , 6 ) and the correspondent moduli spaces on cubic threefold $$Y_3$$ Y 3 are realized by moduli spaces of stable vector bundles $$M^b_Y(2,1,2)$$ M Y b ( 2 , 1 , 2 ) and $$M^b_Y(2,-1,2)$$ M Y b ( 2 , - 1 , 2 ) . We show that moduli spaces of semistable objects of $$(-4)$$ ( - 4 ) -classes on $$Y_{d}$$ Y d are isomorphic to the moduli spaces of instanton sheaves $$M^{inst}_Y$$ M Y inst when $$d\ne 1,2$$ d 1 , 2 , and show that there are open immersions of $$M^{inst}_Y$$ M Y inst into moduli spaces of semistable objects of $$(-4)$$ ( - 4 ) -classes when $$d=1,2$$ d = 1 , 2 . Finally, when $$d=3,4,5$$ d = 3 , 4 , 5 we show that these moduli spaces are all isomorphic to $$M^{ss}_X(2,0,4)$$ M X ss ( 2 , 0 , 4 ) .

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Categorical Torelli theorems for Gushel–Mukai threefolds;Journal of the London Mathematical Society;2024-02-22

2. Bridgeland stability of minimal instanton bundles on Fano threefolds;Journal of the Mathematical Society of Japan;2023-10-25

3. Stability conditions on Kuznetsov components of Gushel–Mukai threefolds and Serre functor;Mathematische Nachrichten;2023-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3