Author:
Le Donne Enrico,Moisala Terhi
Abstract
AbstractThis paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our viewpoint is algebraic: such a phenomenon happens if and only if the semigroup generated by each horizontal half-space is a vertical half-space. We call semigenerated those Carnot groups with this property. For Carnot groups of nilpotency step 3 we provide a complete characterization of semigeneration in terms of whether such groups do not have any Engel-type quotients. Engel-type groups, which are introduced here, are the minimal (in terms of quotients) counterexamples. In addition, we give some sufficient criteria for semigeneration of Carnot groups of arbitrary step. For doing this, we define a new class of Carnot groups, which we call type $$(\Diamond )$$
(
◊
)
and which generalizes the previous notion of type $$(\star )$$
(
⋆
)
defined by M. Marchi. As an application, we get that in type $$ (\Diamond ) $$
(
◊
)
groups and in step 3 groups that do not have any Engel-type algebra as a quotient, one achieves a strong rectifiability result for sets of finite perimeter in the sense of Franchi, Serapioni, and Serra-Cassano.
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献