Analytic properties of heat equation solutions and reachable sets

Author:

Strohmaier Alexander,Waters Alden

Abstract

AbstractThere recently has been some interest in the space of functions on an interval satisfying the heat equation for positive time in the interior of this interval. Such functions were characterised as being analytic on a square with the original interval as its diagonal. In this short note we provide a direct argument that the analogue of this result holds in any dimension. For the heat equation on a bounded Lipschitz domain$$(\Omega \subset \mathbb {R}^{d})$$(ΩRd)at positive time all solutions are analytically extendable to a geometrically determined subdomain$${\mathcal {E}}(\Omega )$$E(Ω)of$${\mathbb {C}}^d$$Cdcontaining$$(\Omega )$$(Ω). This domain is sharp in the sense that there is no larger domain for which this is true. If$$(\Omega )$$(Ω)is a ball we prove an almost converse of this theorem. Any function that is analytic in an open neighbourhood of$${\mathcal {E}}(\Omega )$$E(Ω)is reachable in the sense that it can be obtained from a solution of the heat equation at positive time. This is based on an analysis of the convergence of heat equation solutions in the complex domain using the boundary layer potential method for the heat equation. The converse theorem is obtained using a Wick rotation into the complex domain that is justified by our results. This gives a simple explanation for the shapes appearing in the one-dimensional analysis of the problem in the literature. It also provides a new short and conceptual proof in that case.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3