Weil–Petersson geodesics on the modular surface

Author:

Gadre Vaibhav

Abstract

AbstractWe consider the Weil–Petersson (WP) metric on the modular surface. We lift WP geodesics to the universal cover of the modular surface, and analyse geometric properties of a lift as a path in the hyperbolic metric on the universal cover. For any pair of distinct points in the thick part of the universal cover, we prove that the WP and hyperbolic geodesic segments that connect the pair, fellow-travel in the thick part and all deviations between these segments arise during cusp excursions. Furthermore, we give a quantitative analysis of the deviation during an excursion. We leverage the fellow traveling to derive a correspondence between recurrent WP and hyperbolic rays from a base-point. We show that the correspondence can be promoted to a homeomorphism on the circle of directions. By analysing cuspidal winding of a typical WP geodesic ray, we show that the homeomorphism pushes forward a Lebesgue measure on the circle to a singular measure. In terms of continued fraction coefficients, the singularity boils down to a comparison that we prove, namely, the average coefficient is bounded along a typical WP ray but unbounded along a typical hyperbolic ray.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3