Author:
Andersson Mats,Samuelsson Kalm Håkan,Wulcan Elizabeth
Abstract
AbstractGiven equidimensional (generalized) cycles $$\mu _1$$
μ
1
and $$\mu _2$$
μ
2
on a complex manifold Y we introduce a product $$\mu _1\diamond _{Y} \mu _2$$
μ
1
⋄
Y
μ
2
that is a generalized cycle whose multiplicities at each point are the local intersection numbers at the point. If Y is projective, then given a very ample line bundle $$L\rightarrow Y$$
L
→
Y
we define a product $$\mu _1{\bullet _L}\mu _2$$
μ
1
∙
L
μ
2
whose multiplicities at each point also coincide with the local intersection numbers. In addition, provided that $$\mu _1$$
μ
1
and $$\mu _2$$
μ
2
are effective, this product satisfies a Bézout inequality. If $$i:Y\rightarrow {\mathbb P}^N$$
i
:
Y
→
P
N
is an embedding such that $$i^*\mathcal O(1)=L$$
i
∗
O
(
1
)
=
L
, then $$\mu _1{\bullet _L}\mu _2$$
μ
1
∙
L
μ
2
can be expressed as a mean value of Stückrad–Vogel cycles on $${\mathbb P}^N$$
P
N
. There are quite explicit relations between $${\diamond }_Y$$
⋄
Y
and $${\bullet _L}$$
∙
L
.
Funder
Chalmers University of Technology
Publisher
Springer Science and Business Media LLC
Reference14 articles.
1. Achilles, R., Manaresi, M.: Multiplicities of a bigraded ring and intersection theory. Math. Ann. 309(4), 573–591 (1997)
2. Achilles, R., Rams, S.: Intersection numbers, Segre numbers and generalized Samuel multiplicities. Arch. Math. (Basel) 77(5), 391–398 (2001)
3. Andersson, M., Samuelsson Kalm, H., Wulcan, E., Yger, A.: Segre numbers, a generalized King formula, and local intersections. J. Reine Angew. Math. 728, 105–136 (2017)
4. Andersson, M., Eriksson, D., Samuelsson Kalm, H., Wulcan, E., Yger, A.: Global representation of Segre numbers by Monge–Ampère products. Math. Ann. 380, 349–391 (2021)
5. Andersson, M., Eriksson, D., Samuelsson Kalm, H., Wulcan, E., Yger, A.: Non-proper intersection products and generalized cycles. Eur. J. Math. https://doi.org/10.1007/s40879-021-00473-w