Abstract
AbstractIn this paper, we give an asymptotic formula for the second moment of Dirichlet twists of an automorphic L-function $$L(s, \pi )$$
L
(
s
,
π
)
on the critical line averaged over characters and conductors, where $$\pi $$
π
denotes an irreducible tempered cuspidal automorphic representation of $${\textrm{GL}}_{4}({\mathbb {A}}_{\mathbb {Q}})$$
GL
4
(
A
Q
)
with unitary central character. We give some hybrid bound for the error term with respect to the size of conductors of Dirichlet characters and that of the automorphic representation.
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Brumley, F., Thorner, J., Zaman, A.: Zeros of Rankin–Selberg $$L$$-functions at the edge of the critical strip. arXiv:1804.06402
2. Blomer, V., Fouvry, E., Kowalski, E., Michel, Ph., Milićević, D.: On moments of twisted $$L$$-functions. Am. J. Math. 137(3), 707–768 (2017)
3. Conrey, J.B., Farmer, D., Keating, J., Rubinstein, M., Snaith, N.: Integral moments of $$L$$-functions. Proc. Lond. Math. Soc. 91(1), 33–104 (2005)
4. Conrey, J.B., Iwaniec, H., Soundararajan, K.: The sixth power moment of Dirichlet $$L$$-functions. Geom. Funct. Anal. 22(5), 1257–1288 (2012)
5. Chandee, V., Li, X.: The eighth moment of Dirichlet $$L$$-functions. Adv. Math. 259, 339–375 (2014)