A Stothers–Mason theorem with a difference radical

Author:

Ishizaki Katsuya,Korhonen Risto,Li Nan,Tohge Kazuya

Abstract

AbstractDifferential calculus is not a unique way to observe polynomial equations such as $$a+b=c$$ a + b = c . We propose a way of applying difference calculus to estimate multiplicities of the roots of the polynomials a, b and c satisfying the equation above. Then a difference abc theorem for polynomials is proved using a new notion of a radical of a polynomial. Results, for example, on the non-existence of polynomial solutions to difference Fermat and difference Super-Fermat functional equations are given as applications. We also introduce a truncated second main theorem for differences, and use it to consider these functional equations with non-polynomial entire solutions. Equations with polynomial or non-polynomial solutions are observed to see the sharpness of results obtained.

Funder

University of Eastern Finland (UEF) including Kuopio University Hospital

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference46 articles.

1. Birch, B.J., Chowla, S., Hall Jr., Marshall, Schinzel, A.: On the difference $$x^{3}-y^{2}$$. Norske Vid. Selsk. Forh. (Trondheim) 38, 65–69 (1965)

2. Brownawell, W.D., Masser, D.W.: Vanishing sums in function fields. Math. Proc. Cambrid. Philos. Soc. 100(3), 427–434 (1986)

3. Cartan, H.: Sur la fonction de croissance attachée à une fonction méromorphe de deux variables et ses applications aux fonctions méromorphes d’une variable. C. R. Acad. Sci. Paris 189, 521–523 (1929)

4. Cartan, H.: Sur lés zeros des combinaisons linéaires de $$p$$ fonctions holomorphes données. Math. Cluj 7, 5–31 (1933)

5. Cherry, W., Toropu, C.: Generalized ABC theorems for non-Archimedean entire functions of several variables in arbitrary characteristic. Acta Arith. 136(4), 351–384 (2009)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3