Filtration of cohomology via symmetric semisimplicial spaces

Author:

Banerjee Oishee

Abstract

AbstractIn the simplicial theory of hypercoverings we replace the indexing category $$\Delta $$ Δ by the symmetric simplicial category$$\Delta S$$ Δ S and study (a class of) $$\Delta _{\textrm{inj}}S$$ Δ inj S -hypercoverings, which we call spaces admitting symmetric (semi)simplicial filtration—this special class happens to have a structure of a module over a graded commutative monoid of the form $$\textrm{Sym}\,M$$ Sym M for some space M. For $$\Delta S$$ Δ S -hypercoverings we construct a spectral sequence, somewhat like the Čech-to-derived category spectral sequence. The advantage of working with $$\Delta S$$ Δ S over $$\Delta $$ Δ is that various combinatorial complexities that come with working on $$\Delta $$ Δ are bypassed, giving simpler, unified proof of results like the computation of (in some cases, stable) singular cohomology (with $$\mathbb {Q}$$ Q coefficients) and étale cohomology (with $$\mathbb {Q}_{\ell }$$ Q coefficients) of the moduli space of degree n maps $$C\rightarrow \mathbb {P}^r$$ C P r with C a smooth projective curve of genus g, of unordered configuration spaces, of the moduli space of smooth sections of a fixed $$\mathfrak {g}^r_d$$ g d r that is m-very ample for some m etc. In the special case when a $$\Delta _{\textrm{inj}}S$$ Δ inj S -object Xadmits a symmetric semisimplicial filtration byM, we relate these moduli spaces to a certain derived tensor.

Funder

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Reference31 articles.

1. Arbarello, E., Cornalba, M., Griffiths, P., Daniel Harris, J.: Geometry of Algebraic Curves: Volume I. 1st ed. 1985, 2nd printing 2007 edition. Springer (2007)

2. Arbarello, E., Cornalba, M., Griffiths, P.: Geometry of Algebraic Curves: Volume II. 1st ed. 1985, 2nd printing 2007 edition. Springer (2007)

3. Arnol’d, V.I.: The cohomology of the colored braid group. Mat. Zametki 5, 227–231 (1969)

4. Aumonier, A.: An h-principle for complements of discriminants. arXiv:2112.00326 (2021)

5. Banerjee, I.: Stable cohomology of discriminant complements for an algebraic curve. arXiv:2010.14644,, (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3