Abstract
AbstractWe construct a large class of Riemannian manifolds of arbitrary dimension with Riesz transform unbounded on $$L^p(M)$$
L
p
(
M
)
for all $$p > 2$$
p
>
2
. This extends recent results for Vicsek manifolds, and in particular shows that fractal structure is not necessary for this property.
Funder
Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher
Springer Science and Business Media LLC
Reference15 articles.
1. Amenta, A., Tolomeo, L.: A dichotomy concerning uniform boundedness of Riesz transforms on Riemannian manifolds. Proc. Am. Math. Soc. 147(11), 4797–4803 (2019)
2. Auscher, P., Coulhon, T.: Riesz transform on manifolds and Poincaré inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4(3), 531–555 (2005)
3. Auscher, P., Coulhon, T., Duong, X.T., Hofmann, S.: Riesz transform on manifolds and heat kernel regularity. Ann. Sci. École Norm. Sup. 37(6), 911–957 (2004)
4. Barlow, M., Coulhon, T., Grigor’yan, A.: Manifolds and graphs with slow heat kernel decay. Invent. Math. 144(3), 609–649 (2001)
5. Bernicot, F., Frey, D.: Riesz transforms through reverse Hölder and Poincaré inequalities. Math. Z. 284(3–4), 791–826 (2016)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献