Abstract
AbstractIn order to study the wall-crossing formula of Donaldson type invariants on the blown-up plane, Nakajima–Yoshioka constructed a sequence of blow-up/blow-down diagrams connecting the moduli space of torsion free framed sheaves on projective plane, and that on its blow-up. In this paper, we prove that Nakajima–Yoshioka’s diagram realizes the minimal model program. Furthermore, we obtain a fully-faithful embedding between the derived categories of these moduli spaces.
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Andreatta, M., Wiśniewski, J.A.: A view on contractions of higher-dimensional varieties. Algebraic Geometry–Santa Cruz 1995, Volume 62 of Proceedings of Symposia in Pure Mathematics, pp. 153–183. American Mathematical Society, Providence (1997)
2. Anno, R., Logvinenko, T.: On adjunctions for Fourier–Mukai transforms. Adv. Math. 231(3–4), 2069–2115 (2012)
3. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves Vol. I, Volume 267 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, New York (1985)
4. Ballard, M.R.: Wall crossing for derived categories of moduli spaces of sheaves on rational surfaces. Algebr. Geom. 4(3), 263–280 (2017)
5. Bondal, A., Orlov, D.: Semiorthogonal decomposition for algebraic varieties. alg–geom/9506012 (arXiv e-prints) (1995)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献