Author:
Sheng Weimin,Trudinger Neil S.,Wang Xu-Jia
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Barozzi, E., Massari, U.: Regularity of minimal boundaries with obstacles. Rend. Sem. Mat. Univ. Padova. 66, 129–135 (1982)
2. Caffarelli, L.A.: A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. of Math. 131, 129–134 (1990)
3. Caffarelli, L.A., Gutiérrez, C.E.: Properties of the solutions of the linearized Monge-Ampère equations. Amer. J. Math. 119, 423–465 (1997)
4. Calabi, E.: Hypersurfaces with maximal affinely invariant area. Amer. J. Math. 104, 91–126 (1982)
5. Chern, S.S.: Affine minimal hypersurfaces. In: minimal submanifolds and geodesics. Proc. Japan-United States Sem. Tokyo, 1977 pp. 17–30
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Extremal general affine surface areas;Journal of Mathematical Analysis and Applications;2022-01
2. Affine surface area and convex bodies of elliptic type;Periodica Mathematica Hungarica;2014-09-24
3. An obstacle problem for a class of Monge–Ampère type functionals;Journal of Differential Equations;2013-02
4. General affine surface areas;Advances in Mathematics;2010-08