Abstract
AbstractWe classify the symplectic automorphism groups for cubic fourfolds. The main inputs are the global Torelli theorem for cubic fourfolds and the classification of the fixed-point sublattices of the Leech lattice. Among the highlights of our results, we note that there are 34 possible groups of symplectic automorphisms, with 6 maximal cases. The six maximal cases correspond to 8 non-isomorphic, and isolated in moduli, cubic fourfolds; six of them previously identified by other authors. Finally, the Fermat cubic fourfold has the largest possible order (174, 960) for the automorphism group (non-necessarily symplectic) among all smooth cubic fourfolds.
Funder
Max Planck Institute for Mathematics
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Adler, A.: On the automorphism group of a certain cubic threefold. Am. J. Math. 100(6), 1275–1280 (1978)
2. Allcock, D., Carlson, J.A., Toledo, D.: The moduli space of cubic threefolds as a ball quotient. Mem. Am. Math. Soc. 209(985), xii+70 (2011)
3. Bayer, A., Hassett, B., Tschinkel, Y.: Mori cones of holomorphic symplectic varieties of K3 type. Ann. Sci. Éc. Norm. Supér. (4) 48(4), 941–950 (2015)
4. Beauville, A., Donagi, R.: La variété des droites d’une hypersurface cubique de dimension $$4$$. C. R. Acad. Sci. Paris Sér. I Math. 301(14), 703–706 (1985)
5. Beauville, A.: Le groupe de monodromie des familles universelles d’hypersurfaces et d’intersections complètes, Complex analysis and algebraic geometry (Göttingen, 1985), Lecture Notes in Math., vol. 1194. Springer, Berlin, pp. 8–18 (1986)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献