A geometric Jacquet–Langlands correspondence for paramodular Siegel threefolds

Author:

van Hoften Pol

Abstract

AbstractWe study the Picard–Lefschetz formula for Siegel modular threefolds of paramodular level and prove the weight-monodromy conjecture for its middle degree inner cohomology. We give some applications to the Langlands programme: using Rapoport-Zink uniformisation of the supersingular locus of the special fiber, we construct a geometric Jacquet–Langlands correspondence between $${\text {GSp}}_4$$ GSp 4 and a definite inner form, proving a conjecture of Ibukiyama. We also prove an integral version of the weight-monodromy conjecture and use it to deduce a level lowering result for cohomological cuspidal automorphic representations of $${\text {GSp}}_4$$ GSp 4 .

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference62 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global liftings between inner forms of GSp(4);Journal of Number Theory;2024-10

2. Quinary forms and paramodular forms;Mathematics of Computation;2024-02-16

3. A database of paramodular forms from quinary orthogonal modular forms;Contemporary Mathematics;2024

4. Stable Klingen Vectors and Paramodular Newforms;Lecture Notes in Mathematics;2023

5. Hecke Eigenvalues and Fourier Coefficients;Stable Klingen Vectors and Paramodular Newforms;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3