Abstract
AbstractWe study the Picard–Lefschetz formula for Siegel modular threefolds of paramodular level and prove the weight-monodromy conjecture for its middle degree inner cohomology. We give some applications to the Langlands programme: using Rapoport-Zink uniformisation of the supersingular locus of the special fiber, we construct a geometric Jacquet–Langlands correspondence between $${\text {GSp}}_4$$
GSp
4
and a definite inner form, proving a conjecture of Ibukiyama. We also prove an integral version of the weight-monodromy conjecture and use it to deduce a level lowering result for cohomological cuspidal automorphic representations of $${\text {GSp}}_4$$
GSp
4
.
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Arthur, J.: Automorphic Representations of $${{\rm GSp(4)}}$$: Contributions to Automorphic Forms, Geometry, and Number Theory, pp. 65–81. Johns Hopkins University Press, Baltimore (2004)
2. Asgari, M., Schmidt, R.: Siegel modular forms and representations. Manuscr. Math. 104(2), 173–200 (2001). https://doi.org/10.1007/PL00005869
3. Barnet-Lamb, T., Gee, T., Geraghty, D., Taylor, R.: Potential automorphy and change of weight. Ann. Math. (2) 179(2), 501–609 (2014). https://doi.org/10.4007/annals.2014.179.2.3
4. Caraiani, A.: Local-global compatibility and the action of monodromy on nearby cycles. Duke Math. J. 161(12), 2311–2413 (2012). https://doi.org/10.1215/00127094-1723706
5. Conrad, B.: Deligne’s notes on Nagata compactifications. J. Ramanujan Math. Soc. 22(3), 205–257 (2007)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献