Author:
Bultot Emmanuel,Nicaise Johannes
Abstract
Abstract
We give an explicit formula for the motivic zeta function in terms of a log smooth model. It generalizes the classical formulas for snc-models, but it gives rise to much fewer candidate poles, in general. This formula plays an essential role in recent work on motivic zeta functions of degenerating Calabi–Yau varieties by the second-named author and his collaborators. As a further illustration, we explain how the formula for Newton non-degenerate polynomials can be viewed as a special case of our results.
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Berkovich, V.G.: Vanishing cycles for formal schemes II. Invent. Math. 125(2), 367–390 (1996)
2. Bories, B., Veys, W.: Igusa’s $$p$$-adic local zeta function and the monodromy conjecture for non-degenerate surface singularities. Mem. Amer. Math. Soc. 242 (2016)
3. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 21. Springer, Berlin (1990)
4. Brown, M., Mazzon, E.: The essential skeleton of a product of degenerations. Preprint.
arXiv:1712.07235
5. Bultot, E.: Motivic Integration and Logarithmic Geometry. Ph.D. Thesis, KU Leuven (2015).
arXiv:1505.05688
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献