Abstract
AbstractWe obtain precise estimates, in terms of the measure of balls, for the Besov capacity of annuli and singletons in complete metric spaces. The spaces are only assumed to be uniformly perfect with respect to the centre of the annuli and equipped with a doubling measure.
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Anttila, R.: Pointwise Assouad dimension for measures. Proc. R. Soc. Edinb. Sect. A (to appear)
2. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, vol. 17. European Mathematical Society, Zürich (2011)
3. Björn, A., Björn, J., Christensen, A.: Poincaré inequalities on bow-ties. Preprint (2022). arXiv:2202.07491
4. Björn, A., Björn, J., Gill, J., Shanmugalingam, N.: Geometric analysis on Cantor sets and trees. J. Reine Angew. Math. 725, 63–114 (2017)
5. Björn, A., Björn, J., Lehrbäck, J.: Sharp capacity estimates for annuli in weighted $${\bf {R}}^{n}$$ and metric spaces. Math. Z. 286, 1173–1215 (2017)