Abstract
AbstractWe study the mapping properties of the Hardy–Littlewood fractional maximal operator between Lorentz spaces of the homogeneous tree and discuss the optimality of all the results.
Funder
University of New South Wales
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975)
2. Aldaz, J.M.: An example on the maximal function associated to a nondoubling measure. Publ. Mat. 49(2), 453–458 (2005)
3. Bergh, J., Löfström, J.: Interpolation spaces: an introduction, volume 223. Springer Science & Business Media (2012)
4. Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $$ {L}^p $$ spaces. Revista Matemática Iberoamericana 23(3), 743–770 (2007)
5. Carbonaro, A., Mauceri, G., Meda, S.: $$H^1$$ and BMO for certain locally doubling metric measure spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 8(3):543–582 (2009)