Abstract
AbstractLet k be an algebraically closed field, $$l\ne {{\,\textrm{char}\,}}k$$
l
≠
char
k
a prime number, and X a quasi-projective scheme over k. We show that the étale homotopy type of the dth symmetric power of X is $$\textbf{Z}/l$$
Z
/
l
-homologically equivalent to the dth strict symmetric power of the étale homotopy type of X. We deduce that the $$\textbf{Z}/l$$
Z
/
l
-local étale homotopy type of a motivic Eilenberg–Mac Lane space is an ordinary Eilenberg–Mac Lane space.
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Artin, M., Mazur, B.: Étale Homotopy, Lecture Notes in Mathematics, vol. 100. Springer, Berlin (1969)
2. Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des topos et cohomologie étale des schémas, Lecture Notes in Mathematics, vol. 269. Springer, Berlin (1972)
3. Bousfield, A.K., Kan, D.M.: Homotopy Limits, Completions and Localization, Lecture Notes in Mathematics, vol. 304. Springer, Berlin (1972)
4. Cisinski, D.-C., Déglise, F.: Triangulated Categories of Mixed Motives, Springer Monographs in Mathematics. Springer (2019). arXiv:0912.2110
5. de Jong, A.J.: Smoothness, semi-stability and alterations. Publ. Math. I.H.É.S. 83, 51–93 (1996)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Binomial rings and homotopy theory;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-06-29