1. Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2nd edn, vol. 4. Springer, Berlin (2004)
2. Beauville, A.: Some surfaces with maximal Picard number. J. Éc. polytech. Math. 1, 101–116 (2014)
3. Catanese, F.: Surfaces with $$K^2=p_g=1$$ and their period mapping. In: Algebraic geometry (Proceedings of Summer Meeting, University of Copenhagen, Copenhagen, 1978), pp. 1–29, Lecture Notes in Mathematics, vol. 732. Springer, Berlin (1979)
4. Catanese, F.: The moduli and the global period mapping of surfaces with $$K^2=p_g=1$$: a counterexample to the global Torelli problem. Compositio Math. 41(3), 401–414 (1980)
5. Catanese, F., Debarre, O.: Surfaces with $$K^2=2$$, $$p_g=1$$, $$q=0$$. J. Reine Angew. Math. 395, 1–55 (1989)