Author:
Chambolle Antonin,Lussardi Luca,Villa Elena
Abstract
AbstractLet $$E \subset {{\mathbb {R}}}^N$$
E
⊂
R
N
be a compact set and $$C\subset {{\mathbb {R}}}^N$$
C
⊂
R
N
be a convex body with $$0\in \mathrm{int}\,C$$
0
∈
int
C
. We prove that the topological boundary of the anisotropic enlargement $$E+rC$$
E
+
r
C
is contained in a finite union of Lipschitz surfaces. We also investigate the regularity of the volume function $$V_E(r):=|E+rC|$$
V
E
(
r
)
:
=
|
E
+
r
C
|
proving a formula for the right and the left derivatives at any $$r>0$$
r
>
0
which implies that $$V_E$$
V
E
is of class $$C^1$$
C
1
up to a countable set completely characterized. Moreover, some properties on the second derivative of $$V_E$$
V
E
are proved.
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Ambrosio, L., Soner, H.M.: Level set approach to mean curvature flow in arbitrary codimension. J. Differ. Geom. 43(4), 693–737 (1996)
2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications, Oxford (2000)
3. Ambrosio, L., Colesanti, A., Villa, E.: Outer Minkowski content for some classes of closed sets. Math. Ann. 342(4), 727–748 (2008)
4. Barles, G.: Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit. Nonlinear Anal. 20(9), 1123–1134 (1993)
5. Chambolle, A., Giacomini, A., Lussardi, L.: Continuous limits of discrete perimeters, M2AN Math. Model. Numer. Anal. 44(2), 207–230 (2010)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献