Transitivity in finite general linear groups

Author:

Ernst Alena,Schmidt Kai-Uwe

Abstract

AbstractIt is known that the notion of a transitive subgroup of a permutation group G extends naturally to subsets of G. We consider subsets of the general linear group $${{\,\textrm{GL}\,}}(n,q)$$ GL ( n , q ) acting transitively on flag-like structures, which are common generalisations of t-dimensional subspaces of $$\mathbb {F}_q^n$$ F q n and bases of t-dimensional subspaces of $$\mathbb {F}_q^n$$ F q n . We give structural characterisations of transitive subsets of $${{\,\textrm{GL}\,}}(n,q)$$ GL ( n , q ) using the character theory of $${{\,\textrm{GL}\,}}(n,q)$$ GL ( n , q ) and interpret such subsets as designs in the conjugacy class association scheme of $${{\,\textrm{GL}\,}}(n,q)$$ GL ( n , q ) . In particular we generalise a theorem of Perin on subgroups of $${{\,\textrm{GL}\,}}(n,q)$$ GL ( n , q ) acting transitively on t-dimensional subspaces. We survey transitive subgroups of $${{\,\textrm{GL}\,}}(n,q)$$ GL ( n , q ) , showing that there is no subgroup of $${{\,\textrm{GL}\,}}(n,q)$$ GL ( n , q ) with $$1<t<n$$ 1 < t < n acting transitively on t-dimensional subspaces unless it contains $${{\,\textrm{SL}\,}}(n,q)$$ SL ( n , q ) or is one of two exceptional groups. On the other hand, for all fixed t, we show that there exist nontrivial subsets of $${{\,\textrm{GL}\,}}(n,q)$$ GL ( n , q ) that are transitive on linearly independent t-tuples of $$\mathbb {F}_q^n$$ F q n , which also shows the existence of nontrivial subsets of $${{\,\textrm{GL}\,}}(n,q)$$ GL ( n , q ) that are transitive on more general flag-like structures. We establish connections with orthogonal polynomials, namely the Al-Salam–Carlitz polynomials, and generalise a result by Rudvalis and Shinoda on the distribution of the number of fixed points of the elements in $${{\,\textrm{GL}\,}}(n,q)$$ GL ( n , q ) . Many of our results can be interpreted as q-analogs of corresponding results for the symmetric group.

Funder

Universität Paderborn

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3