Author:
Wu Hao,Xu Xingdong,Zhang Dongfeng
Abstract
AbstractWe show the theory of the formal ultradifferentiable normalization. The tools utilized here are KAM methods and Contraction Mapping Principle in the Banach space fixed with weighted norms.
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Bibikov, Yu.N.: Local theory of nonlinear analytic ordinary differential equations. Lecture Notes in Mathematics, vol. 702. Springer, Berlin (1979)
2. Carletti, T., Marmi, S.: Linearization of analytic and non-analytic germs of diffeomorphisms of $$({\mathbb{C}}, 0)$$. Bull. Soc. Math. Fr. 128, 59–85 (2000)
3. Chow, S.-N., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, New York (1994)
4. De La Llave, R.: A tutorial on KAM theory. University Lecture Series, vol. 32. American Mathematical Society, Providence (2008)
5. Farr, W.W., Li, C., Labouriau, I.S., Langford, W.F.: Degenerate Hopf bifurcation formulas and Hilbert’s 16th problem. SIAM J. Math. Anal. 20, 13–30 (1989)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献