Abstract
AbstractWe extend a result of Guan by showing that the second Betti number of a 4-dimensional primitively symplectic orbifold is at most 23 and there are at most 91 singular points. The maximal possibility 23 can only occur in the smooth case. In addition to the known smooth examples with second Betti numbers 7 and 23, we provide examples of such orbifolds with second Betti numbers 3, 5, 6, 8, 9, 10, 11, 14 and 16. In an appendix, we extend Salamon’s relation among Betti/Hodge numbers of symplectic manifolds to symplectic orbifolds.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Adem, A., Leida, J., Ruan, Y.: Orbifolds and stringy topology, Cambridge Tracts in Mathematics, vol. 171. Cambridge University Press, Cambridge (2007)
2. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differ. Geom. 18(4), 755–782 (1984) (1983)
3. Beauville, A.: Symplectic singularities. Invent. math. 139, 541–549 (2000)
4. Bakker, B., Lehn, C.: A global Torelli theorem for singular symplectic varieties. J. Eur. Math. Soc. (2020). https://doi.org/10.4171/JEMS/1026
5. Bakker, B., Lehn, C.: The global moduli theory of symplectic varieties (2018). arXiv:1812.09748
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Projective orbifolds of Nikulin type;Algebra & Number Theory;2024-01-01
2. Topological Bounds on Hyperkähler Manifolds;Experimental Mathematics;2023-04-10
3. The global moduli theory of symplectic varieties;Journal für die reine und angewandte Mathematik (Crelles Journal);2022-07-29