1. Brav, C., Thomas, H.: Thin monodromy in Sp(4). Compos. Math. 150(3), 333–343 (2014)
2. Candelas, P., de la Ossa, X.C., Green, P.S., Parkes, L.: A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359(1), 21–74 (1991)
3. Chen, Y.-H., Yang, Y., Yui, N.: Monodromy of Picard–Fuchs differential equations for Calabi–Yau threefolds. J. Reine Angew. Math. 616, 167–203 (2008). With an appendix by Cord Erdenberger
4. Deligne, P., Milne, J.S., Ogus, A., Shih, K.-y.: Hodge Cycles, Motives, and Shimura Varieties, Volume 900 of Lecture Notes in Mathematics, Philosophical Studies Series in Philosophy, vol. 20. Springer, Berlin (1982)
5. Doran, C.F., Morgan, J.W.: Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi–Yau threefolds. In: Mirror Symmetry. V, Volume 38 of AMS/IP Stud. Adv. Math., pp. 517–537. American Mathematical Society, Providence, RI (2006). arXiv:math/0505272v1 [math.AG]