Multiple normalized solutions for the planar Schrödinger–Poisson system with critical exponential growth

Author:

Chen Sitong,Rădulescu Vicenţiu D.,Tang Xianhua

Abstract

AbstractThe paper deals with the existence of normalized solutions for the following Schrödinger–Poisson system with $$L^2$$ L 2 -constraint: $$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+\lambda u+\mu \left( \log |\cdot |*u^2\right) u=\left( e^{u^2}-1-u^2\right) u, &{} x\in {\mathbb {R}}^2, \\ \int _{{\mathbb {R}}^2}u^2\textrm{d}x=c, \\ \end{array} \right. \end{aligned}$$ - Δ u + λ u + μ log | · | u 2 u = e u 2 - 1 - u 2 u , x R 2 , R 2 u 2 d x = c , where $$\mu >0$$ μ > 0 , $$\lambda \in {\mathbb {R}}$$ λ R will arise as a Lagrange multiplier and the nonlinearity enjoys critical exponential growth of Trudinger-Moser type. By specifying explicit conditions on the energy level c, we detect a geometry of local minimum and a minimax structure for the corresponding energy functional, and prove the existence of two solutions, one being a local minimizer and one of mountain-pass type. In particular, to catch a second solution of mountain-pass type, some sharp estimates of energy levels are proposed, suggesting a new threshold of compactness in the $$L^2$$ L 2 -constraint. Our study extends and complements the results of Cingolani–Jeanjean (SIAM J Math Anal 51(4): 3533-3568, 2019) dealing with the power nonlinearity $$a|u|^{p-2}u$$ a | u | p - 2 u in the case of $$a>0$$ a > 0 and $$p>4$$ p > 4 , which seems to be the first contribution in the context of normalized solutions. Our model presents some new difficulties due to the intricate interplay between a logarithmic convolution potential and a nonlinear term of critical exponential type and requires a novel analysis and the implementation of new ideas, especially in the compactness argument. We believe that our approach will open the door to the study of other $$L^2$$ L 2 -constrained problems with critical exponential growth, and the new underlying ideas are of future development and applicability.

Funder

Brno University of Technology

Publisher

Springer Science and Business Media LLC

Reference43 articles.

1. Adachi, S., Tanaka, K.: Trudinger type inequalities in $${\mathbb{R}}^N$$ and their best exponents. Proc. Am. Math. Soc. 128, 2051–2057 (2000)

2. Adimurthi, S. L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of $${{\mathbb{R}}}^2$$ involving critical exponents, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17, 481–504 (1990)

3. Alves, C.O., Böer, E.d.S., Miyagaki, O.H.: Existence of normalized solutions for the planar schrödinger-poisson system with exponential critical nonlinearity, eprint arXiv: 2107.13281

4. Alves, C.O., Germano, G.F.: Ground state solution for a class of indefinite variational problems with critical growth. J. Differ. Equ. 265, 444–477 (2018)

5. Bellazzini, J., Jeanjean, L., Luo, T.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations. Proc. Lond. Math. Soc. 107, 303–339 (2013)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3