Author:
Julia Antoine,Nicolussi Golo Sebastiano,Vittone Davide
Abstract
AbstractWe consider submanifolds of sub-Riemannian Carnot groups with intrinsic $$C^1$$
C
1
regularity ($$C^1_H$$
C
H
1
). Our first main result is an area formula for $$C^1_H$$
C
H
1
intrinsic graphs; as an application, we deduce density properties for Hausdorff measures on rectifiable sets. Our second main result is a coarea formula for slicing $$C^1_H$$
C
H
1
submanifolds into level sets of a $$C^1_H$$
C
H
1
function.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications. Clarendon Press, Oxford (2000)
2. Ambrosio, L., Serra Cassano, F., Vittone, D.: Intrinsic regular hypersurfaces in Heisenberg groups. J. Geom. Anal. 16(2), 187–232 (2006)
3. Antonelli, G., Donato, D.D., Don, S., Donne, E.L.: Characterizations of uniformly differentiable co-horizontal intrinsic graphs in carnot groups (2020)
4. Arena, G., Serapioni, R.: Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs. Calc. Var. Partial Differ. Equ. 35(4), 517–536 (2009)
5. Bellaïche, A.: The tangent space in sub-Riemannian geometry. In: Sub-Riemannian geometry, volume 144 of Progr. Math., pages 1–78. Birkhäuser, Basel, (1996)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献