Author:
Kinnunen Juha,Kurki Emma-Karoliina,Mudarra Carlos
Abstract
AbstractWe present ten different characterizations of functions satisfying a weak reverse Hölder inequality on an open subset of a metric measure space with a doubling measure. Among others, we describe these functions as a class of weak $$A_\infty $$
A
∞
weights, which is a generalization of Muckenhoupt weights that allows for nondoubling weights. Although our main results are modeled after conditions that hold true for Muckenhoupt weights, we also discuss two conditions for Muckenhoupt $$A_\infty $$
A
∞
weights that fail to hold for weak $$A_\infty $$
A
∞
weights.
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Anderson, T.C., Hytönen, T., Tapiola, O.: Weak $$A_\infty $$ weights and weak reverse Hölder property in a space of homogeneous type. J. Geom. Anal. 27(1), 95–119 (2017)
2. Björn, A., Björn, J.: Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics, vol. 17. European Mathematical Society (EMS), Zürich (2011)
3. Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 51, 241–250 (1974)
4. Coifman, R.R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogènes: étude de certaines intégrales singulières, French. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)
5. Cruz-Uribe, D., Neugebauer, C.J.: The structure of the reverse Hölder classes. Trans. Am. Math. Soc. 347(8), 2941–2960 (1995)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献