Testing individual baroreflex responses to hypoxia-induced peripheral chemoreflex stimulation

Author:

Kronsbein Hendrik,Gerlach Darius A.ORCID,Heusser Karsten,Hoff Alex,Hoffmann Fabian,Diedrich André,Ehmke Heimo,Jordan Jens,Tank Jens

Abstract

Abstract Introduction Baroreflexes and peripheral chemoreflexes control efferent autonomic activity making these reflexes treatment targets for arterial hypertension. The literature on their interaction is controversial, with suggestions that their individual and collective influence on blood pressure and heart rate regulation is variable. Therefore, we applied a study design that allows the elucidation of individual baroreflex–chemoreflex interactions. Methods We studied nine healthy young men who breathed either normal air (normoxia) or an air–nitrogen–carbon dioxide mixture with decreased oxygen content (hypoxia) for 90 min, with randomization to condition, followed by a 30-min recovery period and then exposure to the other condition for 90 min. Multiple intravenous phenylephrine bolus doses were applied per condition to determine phenylephrine pressor sensitivity as an estimate of baroreflex blood pressure buffering and cardiovagal baroreflex sensitivity (BRS). Results Hypoxia reduced arterial oxygen saturation from 98.1 ± 0.4 to 81.0 ± 0.4% (p < 0.001), raised heart rate from 62.9 ± 2.1 to 76.0 ± 3.6 bpm (p < 0.001), but did not change systolic blood pressure (p = 0.182). Of the nine subjects, six had significantly lower BRS in hypoxia (p < 0.05), two showed a significantly decreased pressor response, and three showed a significantly increased pressor response to phenylephrine in hypoxia, likely through reduced baroreflex buffering (p < 0.05). On average, hypoxia decreased BRS by 6.4 ± 0.9 ms/mmHg (19.9 ± 2.0 vs. 14.12 ± 1.6 ms/mmHg; p < 0.001) but did not change the phenylephrine pressor response (p = 0.878). Conclusion We applied an approach to assess individual baroreflex–chemoreflex interactions in human subjects. A subgroup exhibited significant impairments in baroreflex blood pressure buffering and BRS with peripheral chemoreflex activation. The methodology may have utility in elucidating individual pathophysiology and in targeting treatments modulating baroreflex or chemoreflex function.

Funder

DLR grant

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Endocrine and Autonomic Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3