Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media

Author:

Zogan Hamad,Razzak Imran,Wang Xianzhi,Jameel Shoaib,Xu GuandongORCID

Abstract

AbstractThe ability to explain why the model produced results in such a way is an important problem, especially in the medical domain. Model explainability is important for building trust by providing insight into the model prediction. However, most existing machine learning methods provide no explainability, which is worrying. For instance, in the task of automatic depression prediction, most machine learning models lead to predictions that are obscure to humans. In this work, we propose explainable Multi-Aspect Depression Detection with Hierarchical Attention Network MDHAN, for automatic detection of depressed users on social media and explain the model prediction. We have considered user posts augmented with additional features from Twitter. Specifically, we encode user posts using two levels of attention mechanisms applied at the tweet-level and word-level, calculate each tweet and words’ importance, and capture semantic sequence features from the user timelines (posts). Our hierarchical attention model is developed in such a way that it can capture patterns that leads to explainable results. Our experiments show that MDHAN outperforms several popular and robust baseline methods, demonstrating the effectiveness of combining deep learning with multi-aspect features. We also show that our model helps improve predictive performance when detecting depression in users who are posting messages publicly on social media. MDHAN achieves excellent performance and ensures adequate evidence to explain the prediction.

Funder

Australian Research Council

Global Challenges Research Fund

University of Technology Sydney

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3