Improving medical experts’ efficiency of misinformation detection: an exploratory study

Author:

Nabożny AleksandraORCID,Balcerzak BartłomiejORCID,Morzy MikołajORCID,Wierzbicki AdamORCID,Savov PavelORCID,Warpechowski Kamil

Abstract

AbstractFighting medical disinformation in the era of the pandemic is an increasingly important problem. Today, automatic systems for assessing the credibility of medical information do not offer sufficient precision, so human supervision and the involvement of medical expert annotators are required. Our work aims to optimize the utilization of medical experts’ time. We also equip them with tools for semi-automatic initial verification of the credibility of the annotated content. We introduce a general framework for filtering medical statements that do not require manual evaluation by medical experts, thus focusing annotation efforts on non-credible medical statements. Our framework is based on the construction of filtering classifiers adapted to narrow thematic categories. This allows medical experts to fact-check and identify over two times more non-credible medical statements in a given time interval without applying any changes to the annotation flow. We verify our results across a broad spectrum of medical topic areas. We perform quantitative, as well as exploratory analysis on our output data. We also point out how those filtering classifiers can be modified to provide experts with different types of feedback without any loss of performance.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disinformation about COVID-19 on Social Media and Epistemic Crisis – A Problem Overview;Kwartalnik Historii Nauki i Techniki;2024-06-17

2. A comprehensive survey of fake news in social networks: Attributes, features, and detection approaches;Journal of King Saud University - Computer and Information Sciences;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3